Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.

Development of an experimental model for radiation-induced inhibition of cranial bone regeneration

Maxillofacial Plastic and Reconstructive Surgery 2018³â 40±Ç 1È£ p.34 ~ 34
Á¤È«¹®, ÀÌÁ¤Àº, À̽ÂÁØ, ÀÌÁ¤ÅÂ, ±ÇÅ¿±, ±ÇÅ°Ç,
¼Ò¼Ó »ó¼¼Á¤º¸
Á¤È«¹® ( Jung Hong-Moon ) - Kyungpook National University School of Dentistry Department of Oral and Maxillofacial Surgery
ÀÌÁ¤Àº ( Lee Jeong-Eun ) - Kyungpook National University School of Medicine Department of Radiation Oncology
À̽ÂÁØ ( Lee Seoung-Jun ) - Kyungpook National University Hospital Department of Radiation Oncology
ÀÌÁ¤Å ( Lee Jung-Tae ) - Kyungpook National University School of Dentistry Department of Oral and Maxillofacial Surgery
±ÇÅ¿± ( Kwon Tae-Yub ) - Kyungpook National University School of Dentistry Department of Dental Biomaterials
±ÇÅ°Ǡ( Kwon Tae-Geon ) - Kyungpook National University School of Dentistry Department of Oral and Maxillofacial Surgery

Abstract


Background: Radiation therapy is widely employed in the treatment of head and neck cancer. Adverse effects of therapeutic irradiation include delayed bone healing after dental extraction or impaired bone regeneration at the irradiated bony defect. Development of a reliable experimental model may be beneficial to study tissue regeneration in the irradiated field. The current study aimed to develop a relevant animal model of post-radiation cranial bone defect.

Methods: A lead shielding block was designed for selective external irradiation of the mouse calvaria. Critical-size calvarial defect was created 2 weeks after the irradiation. The defect was filled with a collagen scaffold, with or without incorporation of bone morphogenetic protein 2 (BMP-2) (1 ¥ìg/ml). The non-irradiated mice treated with or without BMP-2-included scaffold served as control. Four weeks after the surgery, the specimens were harvested and the degree of bone formation was evaluated by histological and radiographical examinations.

Results: BMP-2-treated scaffold yielded significant bone regeneration in the mice calvarial defects. However, a single fraction of external irradiation was observed to eliminate the bone regeneration capacity of the BMP-2-incorporated scaffold without influencing the survival of the animals.

Conclusion: The current study established an efficient model for post-radiation cranial bone regeneration and can be applied for evaluating the robust bone formation system using various chemokines or agents in unfavorable, demanding radiation-related bone defect models.

Å°¿öµå

Radiation; Bone; Regeneration; Calvaria; Defect

¿ø¹® ¹× ¸µÅ©¾Æ¿ô Á¤º¸

 

µîÀçÀú³Î Á¤º¸

KCI
KoreaMed